Ground - coupled acoustic airwaves from Mount St . Helens provide constraints on the May 18 , 1980 eruption
نویسندگان
چکیده
The May 18, 1980 Mount St. Helens eruption perturbed the atmosphere and generated atmosphere-to-ground coupled airwaves, which were recorded on at least 35 seismometers operated by the Pacific Northwest Seismograph Network (PNSN). From 102 distinct travel time picks we identify coherent airwaves crossing Washington State primarily to the north and east of the volcano. The travel time curves provide evidence for both stratospheric refractions (at 200 to 300 km from the volcano) as well as probable thermospheric refractions (at 100 to 350 km). The very few first-hand reports of audible volcano sounds within about 80 km of the volcano coincide with a general absence of ground-coupled acoustic arrivals registered within about 100 km and are attributed to upward refraction of sound waves. From the coherent refracted airwave arrivals, we identify at least four distinct sources which we infer to originate 10 s, 114 s, ∼180 s and 319 s after the onset of an 8:32:11 PDT landslide. The first of these sources is attributed to resultant depressurization and explosion of the cryptodome. Most of the subsequent arrivals also appear to be coincident with a source located at or near the presumed volcanic conduit, but at least one of the later arrivals suggests an epicenter displaced about 9 km to the northwest of the vent. This dislocation is compatible with the direction of the sector collapse and lateral blast. We speculate that this concussion corresponds to a northern explosion event associated with hot cryptodome entering the Toutle River Valley. © 2007 Published by Elsevier B.V. R R
منابع مشابه
The mount st. Helens volcanic eruption of 18 may 1980: minimal climatic effect.
An energy-balance numerical climate model was used to simulate the effects of the Mount St. Helens volcanic eruption of 18 May 1980. The resulting surface temperature depression is a maximum of 0.1 degrees C in the winter in the polar region, but is an order of magnitude smaller than the observed natural variability from other effects and will therefore be undetectable.
متن کاملA seismically constrained mass discharge rate for the initiation of the May 18, 1980 Mount St. Helens eruption
We calculate the vertical mass discharge rate from Mount St. Helens for the first few minutes of the May 18, 1980 cataclysmic eruption using a new method based on seismic constraints. The observed seismic waves indicate that the seismic source is a series of single forces. We model these forces as thrusts due to a combination of the momentum flux of the erupted products and the pressure of the ...
متن کاملAn infrasound array study of Mount St. Helens
The ongoing activity of Mount St. Helens provides an opportunity to study the infrasonic wavefield produced by an active, silica-rich volcano. In late October 2004, as a pilot experiment for the Acoustic Surveillance for Hazardous Eruptions (ASHE) project, we deployed two infrasound arrays, each co-located with a broadband seismometer and weather station, to continuously record seismo-acoustic ...
متن کاملThe mount st. Helens volcanic eruption of 18 may 1980: large short-term surface temperature effects.
The surface temperature effects of the 18 May 1980 eruption of Mount St. Helens Volcano were examinedfor 1 day immediately after the eruption; 24-hour temperature differences and Model Output Statistics errors as well as the detailed temporal evolution of surface temperature at selected stations were used. During the daytime hours immediately after the eruption, the temperature was suppressed b...
متن کاملUnderstanding Ecological Responses to the 1980 Eruption of Mount St. Helens
The ecological and geological responses following the May 18, 1980, eruption of Mount St. Helens are all about change: the abrupt changes instigated by geophysical disturbance processes and the rapid and gradual changes of ecological response. The explosive eruption involved an impressive variety of volcanic and hydrologic processes: a massive debris avalanche, a laterally directed blast, mudfl...
متن کامل